Evolutionary conservation of mechanisms upstream of asymmetric Nodal expression: reconciling chick and Xenopus.

نویسندگان

  • M Levin
  • M Mercola
چکیده

Recent experiments have suggested a pathway of genes that regulate left-right asymmetry in vertebrate embryogenesis. The most downstream member of this cascade is nodal (XNR-1 in frogs), which is expressed in the left-side lateral mesoderm. Previous work in the chick [Levin, 1998] suggests that an inductive interaction by Shh (Sonic hedgehog) present at the midline was needed for the left-sided expression of nodal, which by default would not be expressed. Interestingly, it has been reported [Lohr et al., 1997] that in Xenopus, right-side mesoderm that is explanted at st. 15 and allowed to develop in culture, goes on to express nodal, suggesting that lateral mesoderm expresses this gene by default and that a repression of nodal by the midline is needed to achieve asymmetry. Such a contradiction raises interesting questions about the degree of conservation of the mechanisms upstream of nodal asymmetry and, in general, about the differences in the LR pathway among species. Thus we examined this issue directly. We show that in the chick, as in the frog, explanted mesoderm from both sides does, indeed, go on to express nodal, including both the medial and lateral expression domains. Ectopic nodal expression in the medial domain on the right side is not sufficient to induce an ectopic lateral domain. We also show that explanted lateral tissue regenerates node/notochord structures exhibiting Shh expression. Furthermore, we show that Xenopus explants done at st. 15 also regenerate notochord by the stage at which XNR-1 would be expressed. Thus explants are not isolated from the influence of the midline. In contrast to the midline repressor model previously suggested [Lohr et al., 1997] to explain the presence of nodal expression in explants, we propose that the expression is due to induction by signals secreted by regenerating node and notochord tissue (Shh in the chick). Thus our results are consistent with Shh being necessary for nodal induction in both species, and we provide an explanation for both sets of data in terms of a single conserved mechanism upstream of nodal expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serotonin Signaling Is a Very Early Step in Patterning of the Left-Right Axis in Chick and Frog Embryos

BACKGROUND Consistent left-right (LR) asymmetry is a fascinating problem in developmental and evolutionary biology. Conservation of early LR patterning steps among vertebrates as well as involvement of nonprotein small-molecule messengers are very poorly understood. Serotonin (5-HT) is a key neurotransmitter with crucial roles in physiology and cognition. We tested the hypothesis that LR patter...

متن کامل

Cilia-Driven Leftward Flow Determines Laterality in Xenopus

Determination of the vertebrate left-right body axis during embryogenesis results in asymmetric development and placement of most inner organs. Although the asymmetric Nodal cascade is conserved in all vertebrates, the mechanism of symmetry breakage has remained controversial. In mammalian and fish embryos, a cilia-driven leftward flow of extracellular fluid is required for initiation of the No...

متن کامل

SECT ION 1 Asymmetry, handedness and language lateralization

The physiology and behavior of all animals are strongly dependent on the large-scale structure of the body plan. While many animals are fundamentally bilaterally symmetric, vertebrates and many invertebrates exhibit a consistently oriented left–right (LR) asymmetry of the heart, viscera, and brain. The biased asymmetry of LR patterning is distinct from environmentally determined asymmetry or th...

متن کامل

Conservation of sequence and expression of Xenopus and zebrafish dHAND during cardiac, branchial arch and lateral mesoderm development

dHAND and eHAND are related basic helix-loop-helix transcription factors that are expressed in the cardiac mesoderm and in numerous neural crest-derived cell types in chick and mouse. To better understand the evolutionary development of overlapping expression and function of the HAND genes during embryogenesis, we cloned the zebrafish and Xenopus orthologues. Comparison of dHAND sequences in ze...

متن کامل

Functional differences among Xenopus nodal-related genes in left-right axis determination.

An association has been noted previously in chick, mouse and frog embryos between asymmetric nodal-related gene expression and embryonic situs, implying an evolutionarily conserved role in left-right specification. Of the four Xenopus nodal-related genes expressed during gastrulation, only Xnr-1 is re-expressed unilaterally in the left lateral plate mesoderm at neurula/tailbud stages. Here, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental genetics

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 1998